2 arccos(1/2) + arctg(-1/√3) + arcsin(-√2/2) = 2 * π/3 - π/6 - π/4 = (8π - 2π - 3π)/12 = 3π/12 = π/4
Пояснение:
arccos(1/2) = π/3
arctg(-1/√3) = -π/6
arcsin(-√2/2) = -π/4
Таким образом,
2 arccos(1/2) + arctg(-1/√3) + arcsin(-√2/2) = 2 * π/3 - π/6 - π/4 = (8π - 2π - 3π)/12 = 3π/12 = π/4