Решение:
B) $$2\frac{1}{7} \cdot 3\frac{3}{4} + 1\frac{6}{7} \cdot 3\frac{3}{4} = 3\frac{3}{4} \cdot (2\frac{1}{7} + 1\frac{6}{7}) = 3\frac{3}{4} \cdot (2 + 1 + \frac{1}{7} + \frac{6}{7}) = \frac{15}{4} \cdot (3 + \frac{7}{7}) = \frac{15}{4} \cdot (3+1) = \frac{15}{4} \cdot 4 = 15$$
Е) $$6\frac{4}{7} \cdot 1\frac{1}{41} - 3\frac{9}{14} \cdot 1\frac{1}{41} = 1\frac{1}{41} \cdot (6\frac{4}{7} - 3\frac{9}{14}) = \frac{42}{41} \cdot (6\frac{8}{14} - 3\frac{9}{14}) = \frac{42}{41} \cdot (5\frac{22}{14} - 3\frac{9}{14}) = \frac{42}{41} \cdot (2\frac{13}{14}) = \frac{42}{41} \cdot \frac{41}{14} = 3$$
З) $$89 \cdot 87 - 87^2 = 87 \cdot (89 - 87) = 87 \cdot 2 = 174$$
Л) $$87 \cdot \frac{203}{205} - 84 \cdot \frac{203}{205} = \frac{203}{205} \cdot (87 - 84) = \frac{203}{205} \cdot 3 = \frac{609}{205}$$
О) $$5\frac{3}{17} \cdot \frac{5}{8} - \frac{5}{8} \cdot 4\frac{3}{17} = \frac{5}{8} \cdot (5\frac{3}{17} - 4\frac{3}{17}) = \frac{5}{8} \cdot (5 - 4 + \frac{3}{17} - \frac{3}{17}) = \frac{5}{8} \cdot (1 + 0) = \frac{5}{8} \cdot 1 = \frac{5}{8}$$
Ответ: Смотри решение выше