Решение:
H) $$\frac{3}{88} \cdot \frac{5}{12} + \frac{85}{88} \cdot \frac{5}{12} = \frac{5}{12} \cdot (\frac{3}{88} + \frac{85}{88}) = \frac{5}{12} \cdot \frac{88}{88} = \frac{5}{12} \cdot 1 = \frac{5}{12}$$
Р) $$9\frac{3}{5} \cdot 1\frac{4}{7} - 8\frac{1}{5} \cdot 1\frac{4}{7} = 1\frac{4}{7} \cdot (9\frac{3}{5} - 8\frac{1}{5}) = \frac{11}{7} \cdot (9 - 8 + \frac{3}{5} - \frac{1}{5}) = \frac{11}{7} \cdot (1 + \frac{2}{5}) = \frac{11}{7} \cdot \frac{7}{5} = \frac{11}{5} = 2\frac{1}{5}$$
С) $$13\frac{2}{14} \cdot 2\frac{2}{3} - 2\frac{2}{3} \cdot 12\frac{6}{7} = 2\frac{2}{3} \cdot (13\frac{2}{14} - 12\frac{6}{7}) = \frac{8}{3} \cdot (13\frac{1}{7} - 12\frac{6}{7}) = \frac{8}{3} \cdot (13\frac{1}{7} - 12\frac{6}{7}) = \frac{8}{3} \cdot (12\frac{8}{7} - 12\frac{6}{7}) = \frac{8}{3} \cdot \frac{2}{7} = \frac{16}{21}$$
Ответ: Смотри решение выше