Решим данное выражение поэтапно:
- $$4^8 \cdot 11^{10} : 44^8 = 4^8 \cdot 11^{10} : (4 \cdot 11)^8 = 4^8 \cdot 11^{10} : (4^8 \cdot 11^8) = \frac{4^8 \cdot 11^{10}}{4^8 \cdot 11^8} = \frac{11^{10}}{11^8} = 11^{10-8} = 11^2 = 121$$
- $$\frac{(\sqrt{12} + \sqrt{8})^2}{10 + \sqrt{96}} = \frac{(\sqrt{4\cdot3} + \sqrt{4\cdot2})^2}{10 + \sqrt{16\cdot6}} = \frac{(2\sqrt{3} + 2\sqrt{2})^2}{10 + 4\sqrt{6}} = \frac{(2(\sqrt{3} + \sqrt{2}))^2}{10 + 4\sqrt{6}} = \frac{4(\sqrt{3} + \sqrt{2})^2}{10 + 4\sqrt{6}} = \frac{4(3 + 2\sqrt{6} + 2)}{10 + 4\sqrt{6}} = \frac{4(5 + 2\sqrt{6})}{10 + 4\sqrt{6}} = \frac{4(5 + 2\sqrt{6})}{2(5 + 2\sqrt{6})} = \frac{4}{2} = 2$$
Ответ: 121; 2