Решение:
а)
- x = -9
$$x^2 = (-9)^2 = 81$$
$$-x^2 = -(-9)^2 = -81$$
$$(-x)^2 = (-(-9))^2 = 9^2 = 81$$
- x = 9
$$x^2 = (9)^2 = 81$$
$$-x^2 = -(9)^2 = -81$$
$$(-x)^2 = (-9)^2 = 81$$
- x = -6
$$x^2 = (-6)^2 = 36$$
$$-x^2 = -(-6)^2 = -36$$
$$(-x)^2 = (-(-6))^2 = (6)^2 = 36$$
- x = 6
$$x^2 = (6)^2 = 36$$
$$-x^2 = -(6)^2 = -36$$
$$(-x)^2 = (-6)^2 = 36$$
- x = -2
$$x^2 = (-2)^2 = 4$$
$$-x^2 = -(-2)^2 = -4$$
$$(-x)^2 = (-(-2))^2 = (2)^2 = 4$$
- x = 2
$$x^2 = (2)^2 = 4$$
$$-x^2 = -(2)^2 = -4$$
$$(-x)^2 = (-2)^2 = 4$$
б)
- x = -4
$$x^3 = (-4)^3 = -64$$
$$-x^3 = -(-4)^3 = -(-64) = 64$$
$$(-x)^3 = (-(-4))^3 = (4)^3 = 64$$
- x = 4
$$x^3 = (4)^3 = 64$$
$$-x^3 = -(4)^3 = -64$$
$$(-x)^3 = (-4)^3 = -64$$
- x = -3
$$x^3 = (-3)^3 = -27$$
$$-x^3 = -(-3)^3 = -(-27) = 27$$
$$(-x)^3 = (-(-3))^3 = (3)^3 = 27$$
- x = 3
$$x^3 = (3)^3 = 27$$
$$-x^3 = -(3)^3 = -27$$
$$(-x)^3 = (-3)^3 = -27$$
- x = -1
$$x^3 = (-1)^3 = -1$$
$$-x^3 = -(-1)^3 = -(-1) = 1$$
$$(-x)^3 = (-(-1))^3 = (1)^3 = 1$$
- x = 1
$$x^3 = (1)^3 = 1$$
$$-x^3 = -(1)^3 = -1$$
$$(-x)^3 = (-1)^3 = -1$$
Ответ: а) 81; -81; 81; 81; -81; 81; 36; -36; 36; 36; -36; 36; 4; -4; 4; 4; -4; 4.
б) -64; 64; 64; 64; -64; -64; -27; 27; 27; 27; -27; -27; -1; 1; 1; 1; -1; -1.