Вопрос:

94. Четырёхугольник ABCD вписан в окружность. Угол ABD равен 39°, угол CAD равен 55°. Найдите угол АВС. Ответ дайте в градусах.

Смотреть решения всех заданий с листа

Ответ:

Рассмотрим четырехугольник ABCD, вписанный в окружность. Угол CAD опирается на дугу CD. Угол CBD также опирается на дугу CD. Следовательно, углы CAD и CBD равны: \( \angle CAD = \angle CBD = 55^{\circ} \). Угол ABC состоит из углов ABD и CBD: \( \angle ABC = \angle ABD + \angle CBD \). Нам известно, что \( \angle ABD = 39^{\circ} \). Тогда: \( \angle ABC = \angle ABD + \angle CBD = 39^{\circ} + 55^{\circ} = 94^{\circ} \). Ответ: 94.
ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие