Для решения этой задачи нам не хватает данных о массе кефира. Без этого невозможно точно определить количество теплоты. Однако, можно предположить, что в ответе указано количество теплоты для некоторой стандартной порции кефира.
Предположим, что масса кефира равна 1 кг. Тогда:
1. Определим изменение температуры:
\[\Delta T = T_{конечная} - T_{начальная} = 25 °С - 5 °С = 20 °С\]
2. Рассчитаем необходимое количество теплоты, используя формулу:
\[Q = cm\Delta T\]
где:
* (Q) – количество теплоты,
* (c) – удельная теплоёмкость кефира (3800 Дж/(кг·°С)),
* (m) – масса кефира (1 кг),
* (\Delta T) – изменение температуры (20 °С).
Подставим значения:
\[Q = 3800 \frac{Дж}{кг·°С} \cdot 1 кг \cdot 20 °С = 76000 Дж\]
Однако, представленный ответ 32000 Дж, что не соответствует нашим расчетам. Вероятно, масса кефира меньше 1 кг. Для получения ответа 32000 Дж можно рассчитать массу кефира.
\[32000 Дж = 3800 \frac{Дж}{кг·°С} \cdot m \cdot 20 °С\]
\[m = \frac{32000 Дж}{3800 \frac{Дж}{кг·°С} \cdot 20 °С} = \frac{32000}{76000} кг \approx 0.42 кг\]
Таким образом, ответ 32000 Дж верен при массе кефира примерно 0.42 кг.
Ответ: 32000 Дж (при массе кефира около 0.42 кг)