Решим уравнения:
д) $$x : (1\frac{2}{3} + \frac{4}{9}) = \frac{9}{38}$$
Для решения уравнения, нужно известные значения перенести в правую сторону, а неизвестные оставить в левой.
$$x = \frac{9}{38} * (1\frac{2}{3} + \frac{4}{9})$$
Приведем дроби в скобках к общему знаменателю. Общий знаменатель 9. Первую дробь нужно домножить на 3.
$$x = \frac{9}{38} * (1\frac{2*3}{3*3} + \frac{4}{9}) = \frac{9}{38} * (1\frac{6}{9} + \frac{4}{9})$$
Сложим дроби в скобках
$$x = \frac{9}{38} * (1 + \frac{6+4}{9}) = \frac{9}{38} * (1 + \frac{10}{9}) = \frac{9}{38} * 1\frac{10}{9} = \frac{9}{38} * \frac{19}{9}$$
Перемножим дроби
$$x = \frac{9 * 19}{38 * 9} = \frac{1 * 1}{2 * 1} = \frac{1}{2}$$
Ответ: $$x = \frac{1}{2}$$
e) $$(8\frac{1}{2} - 7\frac{1}{4}) \cdot x = \frac{5}{12}$$
Для решения уравнения, нужно известные значения перенести в правую сторону, а неизвестные оставить в левой.
$$x = \frac{5}{12} : (8\frac{1}{2} - 7\frac{1}{4})$$
Приведем дроби в скобках к общему знаменателю. Общий знаменатель 4. Первую дробь нужно домножить на 2.
$$x = \frac{5}{12} : (8\frac{1*2}{2*2} - 7\frac{1}{4}) = \frac{5}{12} : (8\frac{2}{4} - 7\frac{1}{4})$$
Вычтем дроби в скобках
$$x = \frac{5}{12} : ((8-7) + (\frac{2}{4} - \frac{1}{4})) = \frac{5}{12} : (1 + \frac{2-1}{4}) = \frac{5}{12} : (1 + \frac{1}{4}) = \frac{5}{12} : 1\frac{1}{4} = \frac{5}{12} : \frac{5}{4}$$
Разделим дроби
$$x = \frac{5}{12} * \frac{4}{5} = \frac{5*4}{12*5} = \frac{1*1}{3*1} = \frac{1}{3}$$
Ответ: $$x = \frac{1}{3}$$