3. Дано: $$ \angle 1 = \angle 2 $$, $$ \angle 2 + \angle 3 = 180^\circ $$.
Доказать: $$a \parallel c$$.
Доказательство:
Т.к. $$ \angle 1 = \angle 2 $$, то $$ \angle 1 + \angle 3 = 180^\circ $$.
$$ \angle 1 $$ и $$ \angle 3 $$ - односторонние углы при прямых a и c и секущей.
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Т.к. $$ \angle 1 + \angle 3 = 180^\circ $$, то $$ a \parallel c $$, что и требовалось доказать.
Ответ: Доказано.