Пусть длина большей части доски равна x м, тогда длина меньшей части равна $$ \frac{x}{2,4} $$ м. Сумма длин двух частей равна 5,44 м. Составим уравнение:
$$x + \frac{x}{2,4} = 5,44$$.
Приведем дроби к общему знаменателю:
$$\frac{2,4x + x}{2,4} = 5,44$$.
Упростим числитель:
$$\frac{3,4x}{2,4} = 5,44$$.
Умножим обе части уравнения на 2,4:
$$3,4x = 5,44 \cdot 2,4$$.
Вычислим произведение:
$$3,4x = 13,056$$.
Разделим обе части уравнения на 3,4:
$$x = \frac{13,056}{3,4} = 3,84$$.
Итак, длина большей части доски равна 3,84 м, тогда длина меньшей части равна $$ \frac{3,84}{2,4} = 1,6 $$ м.
Ответ: 3,84 м и 1,6 м