Пусть $$AD = x$$, $$BC = y$$.
$$EF = \frac{x+y}{2}$$.
$$E_1F_1 = \frac{x + EF}{2}$$, $$E_2F_2 = \frac{EF + y}{2}$$.
Получаем систему уравнений:
$$E_1F_1 = \frac{x + EF}{2} = 18$$,
$$E_2F_2 = \frac{EF + y}{2} = 12$$,
$$EF = \frac{x+y}{2}$$.
$$x + EF = 36$$,
$$EF + y = 24$$.
$$x + \frac{x+y}{2} = 36$$,
$$\frac{x+y}{2} + y = 24$$.
$$2x + x + y = 72$$,
$$x + y + 2y = 48$$.
$$3x + y = 72$$,
$$x + 3y = 48$$.
$$y = 72 - 3x$$,
$$x + 3(72 - 3x) = 48$$,
$$x + 216 - 9x = 48$$,
$$-8x = -168$$,
$$x = 21$$.
$$AD = 21$$.
Ответ: AD = 21