г) $$\sqrt[7]{q^5\sqrt[3]{2p^3q}}$$.
$$\sqrt[7]{q^5\sqrt[3]{2p^3q}} = \sqrt[7]{q^5\cdot 2^{\frac{1}{3}}p^{\frac{3}{3}}q^{\frac{1}{3}}} = \sqrt[7]{q^5\cdot 2^{\frac{1}{3}}pq^{\frac{1}{3}}} = \sqrt[7]{2^{\frac{1}{3}}pq^{\frac{15}{3}}q^{\frac{1}{3}}} = \sqrt[7]{2^{\frac{1}{3}}pq^{\frac{16}{3}}} = 2^{\frac{1}{3*7}}p^{\frac{1}{7}}q^{\frac{16}{3*7}} = 2^{\frac{1}{21}}p^{\frac{1}{7}}q^{\frac{16}{21}} = \sqrt[21]{2} \cdot \sqrt[7]{p}\cdot \sqrt[21]{q^{16}}$$
Ответ: $$\sqrt[21]{2} \cdot \sqrt[7]{p}\cdot \sqrt[21]{q^{16}}$$