г) $$^5\sqrt{(x-y)^3\sqrt[3]{\frac{1}{y-x}}}$$.
$$^5\sqrt{(x-y)^3\sqrt[3]{\frac{1}{y-x}}} = ^5\sqrt{(x-y)^3\cdot (y-x)^{-\frac{1}{3}}} = ^5\sqrt{(x-y)^3\cdot (-(x-y))^{-\frac{1}{3}}} = ^5\sqrt{(x-y)^3\cdot (-1)^{-\frac{1}{3}}(x-y)^{-\frac{1}{3}}} = (x-y)^{\frac{3}{5}} \cdot (-1)^{-\frac{1}{15}} \cdot (x-y)^{-\frac{1}{15}} = (x-y)^{\frac{3}{5} - \frac{1}{15}} \cdot (-1)^{-\frac{1}{15}} = (x-y)^{\frac{9-1}{15}} \cdot (-1)^{-\frac{1}{15}} = (x-y)^{\frac{8}{15}} \cdot (-1)^{-\frac{1}{15}} = \sqrt[15]{(x-y)^8} \cdot \sqrt[15]{\frac{1}{-1}} = \sqrt[15]{(x-y)^8} \cdot \sqrt[15]{-1}$$
Ответ: $$\sqrt[15]{(x-y)^8} \cdot \sqrt[15]{-1}$$