Используем формулы квадрата суммы $$(a + b)^2 = a^2 + 2ab + b^2$$ и квадрата разности $$(a - b)^2 = a^2 - 2ab + b^2$$
- a) $$(40 + 1)^2 = 40^2 + 2 \times 40 \times 1 + 1^2 = 1600 + 80 + 1 = 1681$$
- б) $$(30 - 1)^2 = 30^2 - 2 \times 30 \times 1 + 1^2 = 900 - 60 + 1 = 841$$
- в) $$101^2 = (100 + 1)^2 = 100^2 + 2 \times 100 \times 1 + 1^2 = 10000 + 200 + 1 = 10201$$
- г) $$99^2 = (100 - 1)^2 = 100^2 - 2 \times 100 \times 1 + 1^2 = 10000 - 200 + 1 = 9801$$
- д) $$48^2 = (50 - 2)^2 = 50^2 - 2 \times 50 \times 2 + 2^2 = 2500 - 200 + 4 = 2304$$
- e) $$52^2 = (50 + 2)^2 = 50^2 + 2 \times 50 \times 2 + 2^2 = 2500 + 200 + 4 = 2704$$
- ж) $$3.5^2 = (3 + 0.5)^2 = 3^2 + 2 \times 3 \times 0.5 + 0.5^2 = 9 + 3 + 0.25 = 12.25$$
- з) $$10.1^2 = (10 + 0.1)^2 = 10^2 + 2 \times 10 \times 0.1 + 0.1^2 = 100 + 2 + 0.01 = 102.01$$
Ответ:
- a) 1681
- б) 841
- в) 10201
- г) 9801
- д) 2304
- e) 2704
- ж) 12.25
- з) 102.01