Вопрос:

15. Как изменится период колебаний груза на пружине, если массу груза уменьшить в 4 раза? А. Не изменится. Б. Уменьшится в 2 раза. В. Увеличится в 2 раза. Г. Уменьшится в 4 раза. Д. Увеличится в 4 раза.

Ответ:

Период колебаний груза на пружине вычисляется по формуле: (T = 2π * \sqrt{\frac{m}{k}}), где m - масса груза, k - жесткость пружины. Если массу уменьшить в 4 раза, то новый период будет: (T' = 2π * \sqrt{\frac{m/4}{k}} = 2π * \frac{1}{2} * \sqrt{\frac{m}{k}} = \frac{1}{2} * T) Таким образом, период уменьшится в 2 раза. Ответ: Б. Уменьшится в 2 раза.
Смотреть решения всех заданий с фото
Подать жалобу Правообладателю

Похожие