Дано:
( m = 200 ) кг (масса камня)
( M = 30 ) кг (масса балки)
( g = 10 ) м/с(^2) (ускорение свободного падения)
Длина плеча силы тяжести камня ( l_1 = \frac{1}{4}L ), где ( L ) - длина балки.
Длина плеча силы, которую нужно приложить ( l_2 = \frac{3}{4}L ).
Сила тяжести камня ( F_1 = mg = 200 \cdot 10 = 2000 ) Н.
Сила тяжести балки (приложена в центре балки) ( F_M = Mg = 30 \cdot 10 = 300 ) Н.
Плечо силы тяжести балки ( l_M = \frac{1}{2}L - \frac{1}{4}L = \frac{1}{4}L ).
Найти: ( F ) (минимальная сила для поднятия камня)
Решение:
Используем правило моментов относительно точки опоры (бревна):
( F \cdot l_2 = F_1 \cdot l_1 + F_M \cdot l_M )
( F \cdot \frac{3}{4}L = mg \cdot \frac{1}{4}L + Mg \cdot \frac{1}{4}L )
( F \cdot \frac{3}{4} = mg \cdot \frac{1}{4} + Mg \cdot \frac{1}{4} )
( F = \frac{1}{3} (mg + Mg) )
( F = \frac{1}{3} (200 \cdot 10 + 30 \cdot 10) = \frac{1}{3} (2000 + 300) = \frac{2300}{3} ≈ 766.67 ) Н
Ответ: ≈ 766.67 Н