Сначала оценим значения чисел, чтобы понять, где они приблизительно находятся на координатной прямой:
* $$-\frac{58}{15}$$ = -3$$\frac{13}{15}$$ (между -4 и -3)
* $$\frac{19}{7}$$ = 2$$\frac{5}{7}$$ (между 2 и 3)
* $$-\frac{59}{18}$$ = -3$$\frac{5}{18}$$ (между -4 и -3, ближе к -3)
Теперь посмотрим на координатную прямую. Заметим, что:
* K, M, N расположены левее нуля (отрицательные числа)
* P, Q расположены правее нуля (положительные числа)
Очевидно, что $$\frac{19}{7}$$ соответствует либо P, либо Q. Поскольку $$\frac{19}{7}$$ ≈ 2.7, а точка Q находится дальше от нуля, чем точка P, то $$\frac{19}{7}$$ соответствует точке P (номер 4).
Теперь разберемся с отрицательными числами. Оба числа $$-\frac{58}{15}$$ и $$-\frac{59}{18}$$ находятся между -3 и -4, но $$-\frac{59}{18}$$ ближе к -3. Из рисунка видно, что N находится ближе к нулю, чем K и M. Значит, $$-\frac{59}{18}$$ соответствует точке N (номер 3), а $$-\frac{58}{15}$$ соответствует точке K (номер 1).
Таким образом, соответствие следующее:
* A) $$-\frac{58}{15}$$ - 1
* Б) $$\frac{19}{7}$$ - 4
* B) $$-\frac{59}{18}$$ - 3
Ответ: 143