Вопрос:

9. Найдите корень уравнения $$2x^2+7x+5=0$$. Если уравнение имеет более одного корня, в ответ запишите меньший из корней.

Ответ:

Решение: 1. Решим квадратное уравнение $$2x^2+7x+5=0$$. 2. Вычислим дискриминант: $$D = b^2 - 4ac = 7^2 - 4 \cdot 2 \cdot 5 = 49 - 40 = 9$$. 3. Найдем корни: $$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-7 + \sqrt{9}}{2 \cdot 2} = \frac{-7 + 3}{4} = \frac{-4}{4} = -1$$ и $$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-7 - \sqrt{9}}{2 \cdot 2} = \frac{-7 - 3}{4} = \frac{-10}{4} = -2.5$$. 4. Меньший корень: $$-2.5$$. Ответ: -2.5
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие