Решение:
1) $$4(x - 3) = x + 6$$
$$4x - 12 = x + 6$$
$$4x - x = 6 + 12$$
$$3x = 18$$
$$x = \frac{18}{3}$$
$$\bold{x = 6}$$
2) $$4 - 6(x + 2) = 3 - 5x$$
$$4 - 6x - 12 = 3 - 5x$$
$$-6x + 5x = 3 - 4 + 12$$
$$-x = 11$$
$$\bold{x = -11}$$
3) $$(5x + 8) - (8x + 14) = 9$$
$$5x + 8 - 8x - 14 = 9$$
$$5x - 8x = 9 - 8 + 14$$
$$-3x = 15$$
$$x = \frac{15}{-3}$$
$$\bold{x = -5}$$
4) $$2,7 + 3y = 9(y - 2,1)$$
$$2,7 + 3y = 9y - 18,9$$
$$3y - 9y = -18,9 - 2,7$$
$$-6y = -21,6$$
$$y = \frac{-21,6}{-6}$$
$$y = \frac{216}{60}$$
$$y = \frac{36}{10}$$
$$\bold{y = 3,6}$$
5) $$0,3(8 - 3y) = 3,2 - 0,8(y - 7)$$
$$2,4 - 0,9y = 3,2 - 0,8y + 5,6$$
$$-0,9y + 0,8y = 3,2 + 5,6 - 2,4$$
$$-0,1y = 6,4$$
$$y = \frac{6,4}{-0,1}$$
$$\bold{y = -64}$$
6) $$\frac{5}{6}(\frac{1}{3}x - \frac{1}{5}) = 3x + 3\frac{1}{3}$$
$$\frac{5}{6}(\frac{1}{3}x - \frac{1}{5}) = 3x + \frac{10}{3}$$
$$\frac{5}{18}x - \frac{5}{30} = 3x + \frac{10}{3}$$
$$\frac{5}{18}x - \frac{1}{6} = 3x + \frac{10}{3}$$
$$\frac{5}{18}x - 3x = \frac{10}{3} + \frac{1}{6}$$
$$\frac{5}{18}x - \frac{54}{18}x = \frac{20}{6} + \frac{1}{6}$$
$$-\frac{49}{18}x = \frac{21}{6}$$
$$-\frac{49}{18}x = \frac{7}{2}$$
$$x = \frac{7}{2} : (-\frac{49}{18})$$
$$x = \frac{7}{2} \cdot (-\frac{18}{49})$$
$$x = -\frac{7 \cdot 18}{2 \cdot 49}$$
$$x = -\frac{126}{98}$$
$$x = -\frac{9}{7}$$
$$\bold{x = -1\frac{2}{7}}$$