1) $$y = \sqrt{7x - x^2}$$
$$7x - x^2 \ge 0$$
$$x(7 - x) \ge 0$$
$$x \in [0; 7]$$
2) $$y = \frac{9}{\sqrt{15 - 2x - x^2}}$$
$$15 - 2x - x^2 > 0$$
$$x^2 + 2x - 15 < 0$$
$$x^2 + 2x - 15 = 0$$
$$D = 2^2 - 4 \cdot 1 \cdot (-15) = 4 + 60 = 64$$
$$x_1 = \frac{-2 + \sqrt{64}}{2 \cdot 1} = \frac{-2 + 8}{2} = 3$$
$$x_2 = \frac{-2 - \sqrt{64}}{2 \cdot 1} = \frac{-2 - 8}{2} = -5$$
Ответ: 1) $$x \in [0; 7]$$; 2) $$-5 < x < 3$$.