Пусть дана сторона треугольника $$a = 12$$ см, и прилежащие к ней углы $$\alpha = 30^\circ$$ и $$\beta = 75^\circ$$.
Тогда третий угол треугольника равен:
$$\gamma = 180^\circ - (30^\circ + 75^\circ) = 180^\circ - 105^\circ = 75^\circ$$
По теореме синусов:
$$\frac{a}{sin \alpha} = \frac{b}{sin \beta} = \frac{c}{sin \gamma}$$
$$\frac{12}{sin 75^\circ} = \frac{b}{sin 30^\circ}$$
$$b = \frac{12 \cdot sin 30^\circ}{sin 75^\circ}$$
$$b = \frac{12 \cdot \frac{1}{2}}{sin 75^\circ} = \frac{6}{sin 75^\circ}$$
Площадь треугольника равна:
$$S = \frac{1}{2} a b sin \gamma$$
$$S = \frac{1}{2} \cdot 12 \cdot \frac{6}{sin 75^\circ} \cdot sin 30^\circ$$
$$S = \frac{1}{2} \cdot 12 \cdot \frac{6}{\frac{\sqrt{6} + \sqrt{2}}{4}} \cdot \frac{1}{2}$$
$$S = \frac{36}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{144}{\sqrt{6} + \sqrt{2}}$$
$$S = \frac{144(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{144(\sqrt{6} - \sqrt{2})}{6 - 2} = \frac{144(\sqrt{6} - \sqrt{2})}{4} = 36(\sqrt{6} - \sqrt{2}) \text{ см}^2$$
Ответ: $$36(\sqrt{6} - \sqrt{2}) \text{ см}^2$$