Дано: $$13\sin^2{\alpha} + 5\cos^2{\alpha} = 11$$.
Найти: $$\tan^2{\alpha}$$.
Преобразуем данное уравнение:
$$13\sin^2{\alpha} + 5\cos^2{\alpha} = 11$$
$$13\sin^2{\alpha} + 5(1 - \sin^2{\alpha}) = 11$$
$$13\sin^2{\alpha} + 5 - 5\sin^2{\alpha} = 11$$
$$8\sin^2{\alpha} = 6$$
$$\sin^2{\alpha} = \frac{6}{8} = \frac{3}{4}$$
Тогда $$\cos^2{\alpha} = 1 - \sin^2{\alpha} = 1 - \frac{3}{4} = \frac{1}{4}$$
$$\tan^2{\alpha} = \frac{\sin^2{\alpha}}{\cos^2{\alpha}} = \frac{\frac{3}{4}}{\frac{1}{4}} = \frac{3}{4} \cdot \frac{4}{1} = 3$$
Ответ: 3