Дано:
\[\cos \alpha = \frac{2\sqrt{6}}{5}\]
\[\frac{3\pi}{2} < \alpha < 2\pi\]
Найти: \(\tan 2\alpha\)
Так как \(\frac{3\pi}{2} < \alpha < 2\pi\), то \(\alpha\) находится в IV четверти, где косинус положительный, а синус отрицательный.
Найдем \(\sin \alpha\):
\[\sin^2 \alpha + \cos^2 \alpha = 1\]
\[\sin^2 \alpha = 1 - \cos^2 \alpha\]
\[\sin^2 \alpha = 1 - \left(\frac{2\sqrt{6}}{5}\right)^2 = 1 - \frac{4 \cdot 6}{25} = 1 - \frac{24}{25} = \frac{1}{25}\]
\[\sin \alpha = \pm \sqrt{\frac{1}{25}} = \pm \frac{1}{5}\]
Так как \(\alpha\) в IV четверти, то \(\sin \alpha = -\frac{1}{5}\).
Теперь найдем \(\tan \alpha\):
\[\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-\frac{1}{5}}{\frac{2\sqrt{6}}{5}} = -\frac{1}{2\sqrt{6}} = -\frac{\sqrt{6}}{12}\]
Используем формулу для тангенса двойного угла:
\[\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{2 \left(-\frac{\sqrt{6}}{12}\right)}{1 - \left(-\frac{\sqrt{6}}{12}\right)^2} = \frac{-\frac{\sqrt{6}}{6}}{1 - \frac{6}{144}} = \frac{-\frac{\sqrt{6}}{6}}{1 - \frac{1}{24}} = \frac{-\frac{\sqrt{6}}{6}}{\frac{23}{24}} = -\frac{\sqrt{6}}{6} \cdot \frac{24}{23} = -\frac{4\sqrt{6}}{23}\]
Ответ: \(-\frac{4\sqrt{6}}{23}\)
Убрать каракули