$$\sqrt{\frac{30-5\sqrt{6}}{4-\sqrt{6}}} \cdot \sqrt{6} = \sqrt{\frac{(30-5\sqrt{6})\cdot 6}{4-\sqrt{6}}} = \sqrt{\frac{180-30\sqrt{6}}{4-\sqrt{6}}}$$
Умножим числитель и знаменатель на $$4 + \sqrt{6}$$
$$\sqrt{\frac{(180-30\sqrt{6})(4+\sqrt{6})}{(4-\sqrt{6})(4+\sqrt{6})}} = \sqrt{\frac{720+180\sqrt{6}-120\sqrt{6}-180}{16-6}} = \sqrt{\frac{540+60\sqrt{6}}{10}} = \sqrt{54+6\sqrt{6}} = \sqrt{54+2 \cdot 3 \sqrt{6} } = \sqrt{(3\sqrt{6})^2+2 \cdot 3 \sqrt{6} +1 } = \sqrt{(3\sqrt{6}+1)^2} = 3\sqrt{6}+1$$
Ответ: $$3\sqrt{6}+1$$