Вопрос:

8. Найдите значение выражения (5²)^-⁸ / 5⁻¹⁸

Ответ:

Для упрощения выражения используем свойства степеней:

  1. При возведении степени в степень показатели перемножаются: $$(a^m)^n = a^{m \cdot n}$$
  2. При делении степеней с одинаковым основанием показатели вычитаются: $$\frac{a^m}{a^n} = a^{m-n}$$

Применим первое свойство к числителю: $$(5^2)^{-8} = 5^{2 \cdot (-8)} = 5^{-16}$$

Теперь разделим полученное выражение на знаменатель, используя второе свойство: $$\frac{5^{-16}}{5^{-18}} = 5^{-16 - (-18)} = 5^{-16 + 18} = 5^2$$

Вычислим 5 в квадрате: $$5^2 = 5 \cdot 5 = 25$$

Ответ: 25

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие