Решение:
$$\frac{8a}{7y^2+y} \cdot \frac{2+14y}{a} = \frac{8a(2+14y)}{a(7y^2+y)} = \frac{8(2+14y)}{7y^2+y} = \frac{8 \cdot 2(1+7y)}{y(7y+1)} = \frac{16(1+7y)}{y(7y+1)} = \frac{16}{y}$$.
Подставляем $$y = 3.2$$:
$$\frac{16}{3.2} = \frac{160}{32} = 5$$.
Ответ: $$5$$