Вопрос:

Постройте график функции $$y = \sqrt{x}$$. Принадлежит ли этому графику точка: a) P(4.9; 0.7); б) Q(144; -12); в) R(625; 25)?

Ответ:

Построим график функции $$y = \sqrt{x}$$.

Чтобы определить, принадлежит ли точка графику функции, необходимо подставить координаты точки в уравнение функции и проверить, выполняется ли равенство.

  • а) P(4.9; 0.7): $$0.7 = \sqrt{4.9}$$ $$0.7 \approx 2.21$$. Равенство не выполняется. Следовательно, точка P не принадлежит графику функции.
  • б) Q(144; -12): $$-12 = \sqrt{144}$$ $$-12
    eq 12$$. Корень квадратный не может быть отрицательным. Равенство не выполняется. Следовательно, точка Q не принадлежит графику функции.
  • в) R(625; 25): $$25 = \sqrt{625}$$ $$25 = 25$$. Равенство выполняется. Следовательно, точка R принадлежит графику функции.

Ответ: Точка R(625; 25) принадлежит графику функции $$y = \sqrt{x}$$.

График функции:

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие