Вопрос:

57. Представьте выражение в виде степени и вычислите его значение: 1) $$2^3\cdot2^4$$;=$$2^{3+4}=2^7=128$$ 2) $$3^{13}: 3^9$$; = $$3^{13-9}=3^4= 81$$ 3) $$7^5\cdot 7^{12}: 7^{14}$$. =$$7^{5+12-14}=7^3=343$$ 4) $$37^8: 37^7\cdot 37^1=37^{8-7+1}=37^2=1369$$ 5) $$(- \frac{1}{7})^10\cdot(- \frac{1}{7})^{12}:(- \frac{1}{7})^9:(- \frac{1}{7})^{20}:(- \frac{1}{7})^{2}=(-\frac{1}{7})^{\frac{13}{81}}$$ 6) $$\frac{5^{12}\cdot 5^4}{5^{13}}; =5^3=243$$ 7) $$\frac{(0,3)^9\cdot (0,3)^{18}}{(0,3)^{23}\cdot (0,3)^4};=0,3^2=0,3^{?}$$ 8) $$2^3\cdot 128;= 1024$$ 9) $$81^1: 3^3\cdot 3^4$$;=6561

Смотреть решения всех заданий с листа

Ответ:

1) $$2^3\cdot2^4 = 2^{3+4} = 2^7 = 128$$

2) $$3^{13}: 3^9 = 3^{13-9} = 3^4 = 81$$

3) $$7^5\cdot 7^{12}: 7^{14} = 7^{5+12-14} = 7^3 = 343$$

4) $$37^8: 37^7\cdot 37^1 = 37^{8-7+1} = 37^2 = 1369$$

5) $$(-\frac{1}{7})^{10}\cdot(-\frac{1}{7})^{12}:(-\frac{1}{7})^9:(-\frac{1}{7})^{20}:(-\frac{1}{7})^{2}=(-\frac{1}{7})^{(10+12-9-20-2)} = (-\frac{1}{7})^{-9} = -7^9$$

6) $$\frac{5^{12}\cdot 5^4}{5^{13}} = \frac{5^{16}}{5^{13}} = 5^{16-13} = 5^3 = 125
eq 243$$

7) $$\frac{(0,3)^9\cdot (0,3)^{18}}{(0,3)^{23}\cdot (0,3)^4} = \frac{(0,3)^{27}}{(0,3)^{27}} = (0,3)^{27-27} = (0,3)^0 = 1$$

8) $$2^3\cdot 128 = 8 \cdot 128 = 1024$$

9) $$81^1: 3^3\cdot 3^4 = (3^4:3^3)\cdot 3^4 = 3^1 \cdot 3^4 = 3^5 = 243$$

Ответ: 1) 128; 2) 81; 3) 343; 4) 1369; 5) $$-7^9$$; 6) 125; 7) 1; 8) 1024; 9) 243

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие