a) $$\left(-\frac{2}{3}a^{-2}b^{3}\right)^{-2} : \frac{8b^{4}}{a^{2}} = \left(-\frac{3}{2}a^{2}b^{-3}\right)^{2} : \frac{8b^{4}}{a^{2}} = \frac{9}{4}a^{4}b^{-6} \cdot \frac{a^{2}}{8b^{4}} = \frac{9a^{6}}{32b^{10}}$$
б) $$(b^{-2} - a^{-2}) \cdot \left(\frac{a+b}{ab}\right)^{-1} = \left(\frac{1}{b^{2}} - \frac{1}{a^{2}}\right) \cdot \frac{ab}{a+b} = \frac{a^{2} - b^{2}}{a^{2}b^{2}} \cdot \frac{ab}{a+b} = \frac{(a - b)(a + b)}{a^{2}b^{2}} \cdot \frac{ab}{a+b} = \frac{(a - b)}{ab}$$
Ответ: a) $$\frac{9a^{6}}{32b^{10}}$$; б) $$\frac{a - b}{ab}$$