Приведение дробей к общему знаменателю:
a) \(\frac{5}{9}\) и \(\frac{1}{4}\). НОЗ(9, 4) = 36. \(\frac{5}{9} = \frac{5 \cdot 4}{9 \cdot 4} = \frac{20}{36}\); \(\frac{1}{4} = \frac{1 \cdot 9}{4 \cdot 9} = \frac{9}{36}\).
б) \(\frac{7}{10}\) и \(\frac{4}{15}\). НОЗ(10, 15) = 30. \(\frac{7}{10} = \frac{7 \cdot 3}{10 \cdot 3} = \frac{21}{30}\); \(\frac{4}{15} = \frac{4 \cdot 2}{15 \cdot 2} = \frac{8}{30}\).
в) \(\frac{3}{20}\) и \(\frac{5}{24}\). НОЗ(20, 24) = 120. \(\frac{3}{20} = \frac{3 \cdot 6}{20 \cdot 6} = \frac{18}{120}\); \(\frac{5}{24} = \frac{5 \cdot 5}{24 \cdot 5} = \frac{25}{120}\).
г) \(\frac{8}{11}\) и \(\frac{35}{44}\). НОЗ(11, 44) = 44. \(\frac{8}{11} = \frac{8 \cdot 4}{11 \cdot 4} = \frac{32}{44}\); \(\frac{35}{44}\).
д) \(\frac{6}{17}\) и \(\frac{2}{11}\). НОЗ(17, 11) = 187. \(\frac{6}{17} = \frac{6 \cdot 11}{17 \cdot 11} = \frac{66}{187}\); \(\frac{2}{11} = \frac{2 \cdot 17}{11 \cdot 17} = \frac{34}{187}\).
е) \(\frac{17}{24}\) и \(\frac{5}{8}\). НОЗ(24, 8) = 24. \(\frac{17}{24}\); \(\frac{5}{8} = \frac{5 \cdot 3}{8 \cdot 3} = \frac{15}{24}\).
Ответ: а) \(\frac{20}{36}\) и \(\frac{9}{36}\); б) \(\frac{21}{30}\) и \(\frac{8}{30}\); в) \(\frac{18}{120}\) и \(\frac{25}{120}\); г) \(\frac{32}{44}\) и \(\frac{35}{44}\); д) \(\frac{66}{187}\) и \(\frac{34}{187}\); е) \(\frac{17}{24}\) и \(\frac{15}{24}\)