Разложим на множители, используя формулу разности квадратов $$a^2 - b^2 = (a - b)(a + b)$$.
$$x^2 - 25 = (x - 5)(x + 5)$$
$$36 - 16y^2 = (6 - 4y)(6 + 4y)$$
$$4x^2 - 81y^2 = (2x - 9y)(2x + 9y)$$
$$0.09t^2 - 121p^2 = (0.3t - 11p)(0.3t + 11p)$$
$$a^2b^2 - \frac{16}{9} = (ab - \frac{4}{3})(ab + \frac{4}{3})$$
$$a^8 - x^{10} = (a^4 - x^5)(a^4 + x^5)$$
$$0.04b^4 - a^{12} = (0.2b^2 - a^6)(0.2b^2 + a^6)$$
$$1.69y^{14} - 900z^8 = (1.3y^7 - 30z^4)(1.3y^7 + 30z^4)$$
$$-1 + 36a^6b^4 = (6a^3b^2 - 1)(6a^3b^2 + 1)$$
$$\frac{1}{25}m^6n^4 - \frac{9}{16}a^2b^8 = (\frac{1}{5}m^3n^2 - \frac{3}{4}ab^4)(\frac{1}{5}m^3n^2 + \frac{3}{4}ab^4)$$
Ответы: