Решим уравнения:
a) $$5x - 9 = 3x - 27$$
Перенесем члены с $$x$$ в левую часть, а числа - в правую:
$$5x - 3x = -27 + 9$$
$$2x = -18$$
$$x = -9$$
б) $$3(9 - 2x) - 3 = 6$$
Раскроем скобки:
$$27 - 6x - 3 = 6$$
$$24 - 6x = 6$$
$$-6x = 6 - 24$$
$$-6x = -18$$
$$x = 3$$
в) $$x:3 = 4:10$$
$$x/3 = 4/10$$
$$x = (4/10) * 3$$
$$x = 12/10 = 6/5 = 1.2$$
г) $$37:25 = 2\frac{2}{3}:x$$
Переведем смешанную дробь в неправильную:
$$2\frac{2}{3} = \frac{2*3 + 2}{3} = \frac{8}{3}$$
Теперь уравнение выглядит так:
$$\frac{37}{25} = \frac{8/3}{x}$$
Используем основное свойство пропорции:
$$37 * x = 25 * \frac{8}{3}$$
$$37x = \frac{200}{3}$$
$$x = \frac{200}{3*37} = \frac{200}{111}$$
д) $$y:8.4 = 3.4:10.2$$
$$\frac{y}{8.4} = \frac{3.4}{10.2}$$
$$y = \frac{3.4 * 8.4}{10.2}$$
$$y = \frac{28.56}{10.2} = 2.8$$
Ответы:
a) x = -9
б) x = 3
в) x = 1.2
г) x = 200/111
д) y = 2.8