Вопрос:

Решите графически систему уравнений Из двух гор x + y = 3, 2x-y=3. одов, расстояние между которыми равно 52 км, одновременно выехали навстречу друг другу два велосипедиста и встретились через 2 ч после качала движе кения. Найдите ите скорость каждого велосипедиста, если известно, что то первый велосипедист проезжает за 3 ч на 18 км бо е, чем второй за 2 ч. условие i adrasa

Смотреть решения всех заданий с листа

Ответ:

Решим графически систему уравнений:

$$\begin{cases}
x + y = 3 \\
2x - y = 3
\end{cases}$$

Выразим y через x в обоих уравнениях:

$$\begin{cases}
y = 3 - x \\
y = 2x - 3
\end{cases}$$

Построим графики функций y = 3 - x и y = 2x - 3.

Для построения прямой y = 3 - x, возьмем две точки:

x = 0, y = 3 - 0 = 3

x = 3, y = 3 - 3 = 0

Для построения прямой y = 2x - 3, возьмем две точки:

x = 0, y = 2 \cdot 0 - 3 = -3

x = 2, y = 2 \cdot 2 - 3 = 1

Найдем точку пересечения графиков:

$$\begin{cases}
y = 3 - x \\
y = 2x - 3
\end{cases}$$

$$3 - x = 2x - 3$$

$$3x = 6$$

$$x = 2$$

$$y = 3 - 2 = 1$$

Точка пересечения (2; 1).

Ответ: x = 2, y = 1.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие