Начнем с решения примера по действиям:
1. Сначала решим выражение в скобках. Первым делом умножение: $$9\frac{3}{8} \cdot \frac{4}{5}$$. Преобразуем смешанную дробь в неправильную: $$9\frac{3}{8} = \frac{9 \cdot 8 + 3}{8} = \frac{72 + 3}{8} = \frac{75}{8}$$. Теперь умножаем: $$\frac{75}{8} \cdot \frac{4}{5} = \frac{75 \cdot 4}{8 \cdot 5} = \frac{300}{40}$$. Сократим дробь на 20: $$\frac{300:20}{40:20} = \frac{15}{2}$$.
2. Теперь выполним вычитание в скобках: $$3 - \frac{15}{2}$$. Представим 3 как дробь со знаменателем 2: $$3 = \frac{3 \cdot 2}{2} = \frac{6}{2}$$. Вычитаем: $$\frac{6}{2} - \frac{15}{2} = \frac{6 - 15}{2} = \frac{-9}{2}$$.
3. Далее выполним деление: $$\frac{-9}{2} : 2\frac{2}{5}$$. Преобразуем смешанную дробь в неправильную: $$2\frac{2}{5} = \frac{2 \cdot 5 + 2}{5} = \frac{10 + 2}{5} = \frac{12}{5}$$. Делим: $$\frac{-9}{2} : \frac{12}{5} = \frac{-9}{2} \cdot \frac{5}{12} = \frac{-9 \cdot 5}{2 \cdot 12} = \frac{-45}{24}$$. Сократим дробь на 3: $$\frac{-45:3}{24:3} = \frac{-15}{8}$$.
4. Теперь выполним вычитание: $$\frac{-15}{8} - 2\frac{1}{8}$$. Преобразуем смешанную дробь в неправильную: $$2\frac{1}{8} = \frac{2 \cdot 8 + 1}{8} = \frac{16 + 1}{8} = \frac{17}{8}$$. Вычитаем: $$\frac{-15}{8} - \frac{17}{8} = \frac{-15 - 17}{8} = \frac{-32}{8}$$.
5. Сокращаем дробь: $$\frac{-32}{8} = -4$$.
Ответ: -4