Решим систему неравенств:
x² + x − 12 ≤0
8 + 2x ≤ 0
Решим первое неравенство: x² + x − 12 ≤0
Найдем корни квадратного уравнения x² + x − 12 = 0
D = 1² - 4 * 1 * (-12) = 1 + 48 = 49
x₁ = (-1 - √49) / 2 = (-1 - 7) / 2 = -8 / 2 = -4
x₂ = (-1 + √49) / 2 = (-1 + 7) / 2 = 6 / 2 = 3
Решением неравенства x² + x − 12 ≤ 0 является отрезок [-4; 3].
Решим второе неравенство: 8 + 2x ≤ 0
2x ≤ -8
x ≤ -4
Решением системы является пересечение решений обоих неравенств: x ∈ [-4; 3] и x ≤ -4.
Пересечением является точка x = -4.
Ответ: x = -4