Вопрос:

6. Решите систему уравнений: $$\begin{cases} 3x - y = -1 \\ -x + 2y = 7 \end{cases}$$ В ответе запишите сумму решений системы.

Ответ:

Решение системы уравнений

Дана система уравнений:

$$\begin{cases} 3x - y = -1 \\ -x + 2y = 7 \end{cases}$$

Выразим y из первого уравнения: $$y = 3x + 1$$

Подставим это выражение для y во второе уравнение:

$$-x + 2(3x + 1) = 7$$

Раскроем скобки: $$-x + 6x + 2 = 7$$

Упростим: $$5x + 2 = 7$$

Перенесем 2 в правую часть: $$5x = 7 - 2$$

Упростим: $$5x = 5$$

Решим относительно x: $$x = \frac{5}{5} = 1$$

Теперь найдем y, подставив x = 1 в выражение для y: $$y = 3 \cdot 1 + 1 = 3 + 1 = 4$$

Решение системы уравнений: $$x = 1, y = 4$$

Сумма решений системы: $$x + y = 1 + 4 = 5$$

Ответ: Сумма решений системы: 5

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие