Найдем угол C:
$$ \angle C = 180° - \angle A - \angle B = 180° - 85° - 65° = 30° $$По теореме синусов:
$$ \frac{BC}{\sin A} = \frac{AB}{\sin C} $$Выразим BC:
$$ BC = \frac{AB \cdot \sin A}{\sin C} = \frac{16 \cdot \sin 85°}{\sin 30°} = \frac{16 \cdot \sin 85°}{0,5} = 32 \sin 85° $$AC:
$$ \frac{AC}{\sin B} = \frac{AB}{\sin C} $$ $$ AC = \frac{AB \cdot \sin B}{\sin C} = \frac{16 \cdot \sin 65°}{\sin 30°} = \frac{16 \cdot \sin 65°}{0,5} = 32 \sin 65° $$∠C = 30°
Ответ: 32 sin 85°