Вопрос:

Решите уравнение: a) $$5x^2 + 14x - 3 = 0$$; б) $$36x^2 - 25 = 0$$; в) $$4x^2 = 16x$$; г) $$(x-3)^2 - 2(x-3) - 15 = 0$$.

Ответ:

a) $$5x^2 + 14x - 3 = 0$$ Дискриминант $$D = b^2 - 4ac = 14^2 - 4 * 5 * (-3) = 196 + 60 = 256$$ $$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-14 + \sqrt{256}}{2*5} = \frac{-14 + 16}{10} = \frac{2}{10} = 0.2$$ $$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-14 - \sqrt{256}}{2*5} = \frac{-14 - 16}{10} = \frac{-30}{10} = -3$$ Ответ: $$x_1 = 0.2$$, $$x_2 = -3$$ б) $$36x^2 - 25 = 0$$ $$36x^2 = 25$$ $$x^2 = \frac{25}{36}$$ $$x = \pm \sqrt{\frac{25}{36}} = \pm \frac{5}{6}$$ Ответ: $$x_1 = \frac{5}{6}$$, $$x_2 = -\frac{5}{6}$$ в) $$4x^2 = 16x$$ $$4x^2 - 16x = 0$$ $$4x(x - 4) = 0$$ $$4x = 0$$ или $$x - 4 = 0$$ $$x_1 = 0$$, $$x_2 = 4$$ Ответ: $$x_1 = 0$$, $$x_2 = 4$$ г) $$(x-3)^2 - 2(x-3) - 15 = 0$$ Пусть $$y = x - 3$$, тогда уравнение примет вид: $$y^2 - 2y - 15 = 0$$ Дискриминант $$D = (-2)^2 - 4 * 1 * (-15) = 4 + 60 = 64$$ $$y_1 = \frac{-(-2) + \sqrt{64}}{2*1} = \frac{2 + 8}{2} = \frac{10}{2} = 5$$ $$y_2 = \frac{-(-2) - \sqrt{64}}{2*1} = \frac{2 - 8}{2} = \frac{-6}{2} = -3$$ Тогда: $$x - 3 = 5 => x_1 = 5 + 3 = 8$$ $$x - 3 = -3 => x_2 = -3 + 3 = 0$$ Ответ: $$x_1 = 8$$, $$x_2 = 0$$
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие