Применим протокол Я.
- Определим цель задания: решить данные уравнения.
- Составим краткий план: Решим каждое уравнение по очереди.
- Выполним подробный анализ:
- Уравнение а):
$$3\frac{2}{3}:a = 4\frac{8}{9}:1\frac{5}{7}$$
$$\frac{11}{3}:a = \frac{44}{9}:\frac{12}{7}$$
$$\frac{11}{3}:a = \frac{44}{9} \cdot \frac{7}{12}$$
$$\frac{11}{3}:a = \frac{11 \cdot 4 \cdot 7}{9 \cdot 4 \cdot 3}$$
$$\frac{11}{3}:a = \frac{77}{27}$$
$$a = \frac{11}{3}:\frac{77}{27}$$
$$a = \frac{11}{3} \cdot \frac{27}{77}$$
$$a = \frac{11 \cdot 3 \cdot 9}{3 \cdot 11 \cdot 7}$$
$$a = \frac{9}{7} = 1\frac{2}{7}$$
- Уравнение б):
$$1\frac{7}{8}:2\frac{3}{4} = 3\frac{3}{4}:b$$
$$\frac{15}{8}:\frac{11}{4} = \frac{15}{4}:b$$
$$\frac{15}{8} \cdot \frac{4}{11} = \frac{15}{4}:b$$
$$\frac{15 \cdot 4}{8 \cdot 11} = \frac{15}{4}:b$$
$$\frac{15}{22} = \frac{15}{4}:b$$
$$b = \frac{15}{4}:\frac{15}{22}$$
$$b = \frac{15}{4} \cdot \frac{22}{15}$$
$$b = \frac{15 \cdot 22}{4 \cdot 15}$$
$$b = \frac{22}{4} = \frac{11}{2} = 5\frac{1}{2}$$
- Уравнение в):
$$8\frac{1}{4}:c = 13\frac{3}{4}:2\frac{1}{3}$$
$$\frac{33}{4}:c = \frac{55}{4}:\frac{7}{3}$$
$$\frac{33}{4}:c = \frac{55}{4} \cdot \frac{3}{7}$$
$$\frac{33}{4}:c = \frac{165}{28}$$
$$c = \frac{33}{4}:\frac{165}{28}$$
$$c = \frac{33}{4} \cdot \frac{28}{165}$$
$$c = \frac{33 \cdot 28}{4 \cdot 165}$$
$$c = \frac{924}{660}$$
$$c = \frac{14}{10} = \frac{7}{5} = 1\frac{2}{5}$$
- Уравнение г):
$$5:2\frac{5}{7} = 2\frac{1}{2}:d$$
$$5:\frac{19}{7} = \frac{5}{2}:d$$
$$5 \cdot \frac{7}{19} = \frac{5}{2}:d$$
$$\frac{35}{19} = \frac{5}{2}:d$$
$$d = \frac{5}{2}:\frac{35}{19}$$
$$d = \frac{5}{2} \cdot \frac{19}{35}$$
$$d = \frac{5 \cdot 19}{2 \cdot 5 \cdot 7}$$
$$d = \frac{19}{14} = 1\frac{5}{14}$$
Ответ: а) \(a = 1\frac{2}{7}\); б) \(b = 5\frac{1}{2}\); в) \(c = 1\frac{2}{5}\); г) \(d = 1\frac{5}{14}\).