Решим каждое уравнение:
- a) $$(2x-5)^2 = 4x^2$$
$$4x^2 - 20x + 25 = 4x^2$$
$$4x^2 - 4x^2 - 20x = -25$$
$$-20x = -25$$
$$x = \frac{-25}{-20} = \frac{5}{4} = 1,25$$
- б) $$(3x + 1)^2 - 3x(3x + 1) = 0$$
$$9x^2 + 6x + 1 - 9x^2 - 3x = 0$$
$$9x^2 - 9x^2 + 6x - 3x = -1$$
$$3x = -1$$
$$x = -\frac{1}{3}$$
- в) $$(7x-5)^2=7(x + 1)^2$$
$$49x^2 - 70x + 25 = 7(x^2 + 2x + 1)$$
$$49x^2 - 70x + 25 = 7x^2 + 14x + 7$$
$$49x^2 - 7x^2 - 70x - 14x = 7 - 25$$
$$42x^2 - 84x = -18$$
$$42x^2 - 84x + 18 = 0$$
$$21x^2 - 42x + 9 = 0$$
$$D = (-42)^2 - 4 \cdot 21 \cdot 9 = 1764 - 756 = 1008$$
$$x_1 = \frac{42 + \sqrt{1008}}{2 \cdot 21} = \frac{42 + 12\sqrt{7}}{42} = 1 + \frac{2\sqrt{7}}{7}$$
$$x_2 = \frac{42 - \sqrt{1008}}{2 \cdot 21} = \frac{42 - 12\sqrt{7}}{42} = 1 - \frac{2\sqrt{7}}{7}$$
Ответ:
<ol>
<li>$$x = 1,25$$</li>
<li>$$x = -\frac{1}{3}$$</li>
<li>$$x_1 = 1 + \frac{2\sqrt{7}}{7}; x_2 = 1 - \frac{2\sqrt{7}}{7}$$</li>
</ol>