Решим тригонометрические уравнения.
а) cos(x + π/6)-1=0
cos(x + π/6) = 1
x + π/6 = 2πn, n ∈ Z
x = -π/6 + 2πn, n ∈ Z
Ответ: x = -π/6 + 2πn, n ∈ Z
б) 2 cosx = 1
cosx = 1/2
x = ±arccos(1/2) + 2πn, n ∈ Z
x = ±π/3 + 2πn, n ∈ Z
Ответ: x = ±π/3 + 2πn, n ∈ Z
в) 2 cos²x - 5cosx + 2 = 0
Пусть cosx = t, тогда
2t² - 5t + 2 = 0
D = (-5)² - 4 * 2 * 2 = 25 - 16 = 9
t₁ = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 8 / 4 = 2
t₂ = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 2 / 4 = 1/2
cosx = 2 (не имеет решений, так как |cosx| ≤ 1)
cosx = 1/2
x = ±arccos(1/2) + 2πn, n ∈ Z
x = ±π/3 + 2πn, n ∈ Z
Ответ: x = ±π/3 + 2πn, n ∈ Z