1. Определим количество вещества (воды) в капле:
$$n = \frac{m}{M}$$,
где m = 0.03 г = 0.00003 кг, M(H₂O) = 18 г/моль = 0.018 кг/моль.
$$n = \frac{0.00003 кг}{0.018 кг/моль} = 1.667 * 10^{-6}$$ моль.
2. Определим число молекул воды в капле:
$$N = n * N_A$$,
где $$N_A$$ - число Авогадро ($$6.022 * 10^{23}$$ моль⁻¹).
$$N = 1.667 * 10^{-6} моль * 6.022 * 10^{23} моль^{-1} = 1.0038 * 10^{18}$$ молекул.
3. Определим число электронов в одной молекуле воды (H₂O):
Каждый атом водорода имеет 1 электрон, а атом кислорода - 8 электронов. Таким образом, в молекуле воды 2 + 8 = 10 электронов.
4. Определим общее число электронов в капле:
$$N_e = N * 10 = 1.0038 * 10^{18} * 10 = 1.0038 * 10^{19}$$ электронов.
5. Вычислим 1% от числа электронов:
$$N_{1%} = 0.01 * N_e = 0.01 * 1.0038 * 10^{19} = 1.0038 * 10^{17}$$ электронов.
6. Определим заряд, переданный от одной капли к другой:
Заряд одного электрона: $$e = -1.602 * 10^{-19}$$ Кл.
Общий переданный заряд: $$q = N_{1%} * e = 1.0038 * 10^{17} * 1.602 * 10^{-19} Кл = 0.1608$$ Кл.
7. Вычислим силу взаимодействия по закону Кулона:
$$F = k * \frac{|q_1 * q_2|}{r^2}$$,
где k = 9 * 10⁹ Н·м²/Кл², $$q_1 = q_2 = 0.1608$$ Кл, r = 1 км = 1000 м.
$$F = 9 * 10^9 * \frac{(0.1608 Кл)^2}{(1000 м)^2} = 9 * 10^9 * \frac{0.02585664}{10^6} Н = 9 * 10^3 * 0.02585664 Н = 232.71$$ Н.
Таким образом, сила взаимодействия между каплями равна приблизительно 232.71 Н.