<ol>
<li>1) $$\frac{\sqrt{a} + 7}{a - 49} = \frac{\sqrt{a} + 7}{(\sqrt{a} - 7)(\sqrt{a} + 7)} = \frac{1}{\sqrt{a} - 7}$$</li>
<li>2) $$\frac{33 - \sqrt{33}}{\sqrt{33}} = \frac{\sqrt{33} \cdot \sqrt{33} - \sqrt{33}}{\sqrt{33}} = \frac{\sqrt{33}(\sqrt{33} - 1)}{\sqrt{33}} = \sqrt{33} - 1$$</li>
<li>3) $$\frac{a - 2\sqrt{3a} + 3}{a - 3} = \frac{(\sqrt{a})^2 - 2\sqrt{3}\sqrt{a} + (\sqrt{3})^2}{(\sqrt{a})^2 - (\sqrt{3})^2} = \frac{(\sqrt{a} - \sqrt{3})^2}{(\sqrt{a} - \sqrt{3})(\sqrt{a} + \sqrt{3})} = \frac{\sqrt{a} - \sqrt{3}}{\sqrt{a} + \sqrt{3}}$$</li>
</ol>
<strong>Ответ:</strong><br>
1) $$\frac{1}{\sqrt{a} - 7}$$<br>
2) $$\sqrt{33} - 1$$<br>
3) $$\frac{\sqrt{a} - \sqrt{3}}{\sqrt{a} + \sqrt{3}}$$