Вопрос:

1 Сократите дробь: a) 12a6b 27a2b3; б) 3x2 − 15x 15x в) x2 − 16 2x − 8.

Ответ:

a) Сократим дробь $$ \frac{12a^6b}{27a^2b^3} $$

Разделим числитель и знаменатель на общий множитель $$3a^2b$$, получим: $$ \frac{12a^6b}{27a^2b^3} = \frac{12a^6b : 3a^2b}{27a^2b^3 : 3a^2b} = \frac{4a^4}{9b^2}. $$

Ответ: $$ \frac{4a^4}{9b^2} $$

б) Сократим дробь $$ \frac{3x^2-15x}{15x} $$

Разложим числитель на множители, вынесем общий множитель за скобки: $$ 3x^2-15x = 3x(x-5) $$

Тогда дробь примет вид:$$ \frac{3x(x-5)}{15x} $$

Разделим числитель и знаменатель на общий множитель $$3x$$, получим: $$ \frac{3x(x-5)}{15x} = \frac{3x(x-5) : 3x}{15x : 3x} = \frac{x-5}{5}. $$

Ответ: $$ \frac{x-5}{5} $$

в) Сократим дробь $$ \frac{x^2-16}{2x-8} $$

Разложим числитель и знаменатель на множители:$$ x^2-16 = (x-4)(x+4) $$

$$ 2x-8 = 2(x-4) $$

Тогда дробь примет вид:$$ \frac{(x-4)(x+4)}{2(x-4)} $$

Разделим числитель и знаменатель на общий множитель $$(x-4)$$, получим:$$ \frac{(x-4)(x+4)}{2(x-4)} = \frac{(x-4)(x+4) : (x-4)}{2(x-4) : (x-4)} = \frac{x+4}{2}. $$

Ответ: $$ \frac{x+4}{2} $$

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие