Вопрос:

Solve the expression: $$5 - (2,8 - \frac{3}{7} : \frac{9}{14}) \cdot 1,5 =$$

Ответ:

Let's solve the expression step by step: 1. Divide 3/7 by 9/14: $$\frac{3}{7} : \frac{9}{14} = \frac{3}{7} \cdot \frac{14}{9} = \frac{3 \cdot 14}{7 \cdot 9} = \frac{42}{63} = \frac{2}{3}$$ 2. Subtract the result from 2.8: First, convert 2.8 to a fraction: $$2.8 = \frac{28}{10} = \frac{14}{5}$$. Then, $$\frac{14}{5} - \frac{2}{3} = \frac{14 \cdot 3 - 2 \cdot 5}{15} = \frac{42 - 10}{15} = \frac{32}{15}$$ 3. Multiply the result by 1.5: First, convert 1.5 to a fraction: $$1.5 = \frac{15}{10} = \frac{3}{2}$$. Then, $$\frac{32}{15} \cdot \frac{3}{2} = \frac{32 \cdot 3}{15 \cdot 2} = \frac{96}{30} = \frac{16}{5} = 3.2$$ 4. Subtract the result from 5: $$5 - 3.2 = 1.8$$ Therefore, $$5 - (2,8 - \frac{3}{7} : \frac{9}{14}) \cdot 1,5 = 5 - (\frac{14}{5} - \frac{2}{3}) \cdot \frac{3}{2} = 5 - (\frac{32}{15}) \cdot \frac{3}{2} = 5 - \frac{16}{5} = 5 - 3.2 = 1.8$$ Answer: 1.8
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие