Let's solve the expression step by step:
1. Convert the mixed number to an improper fraction: $$1\frac{5}{6} = \frac{1 \cdot 6 + 5}{6} = \frac{11}{6}$$
2. Divide 8/25 by 0.4, rewrite 0.4 as a fraction: $$0.4 = \frac{4}{10} = \frac{2}{5}$$
So, $$\frac{8}{25} : \frac{2}{5} = \frac{8}{25} \cdot \frac{5}{2} = \frac{8 \cdot 5}{25 \cdot 2} = \frac{40}{50} = \frac{4}{5}$$
3. Multiply the fractions: $$\frac{11}{6} \cdot \frac{3}{11} = \frac{11 \cdot 3}{6 \cdot 11} = \frac{33}{66} = \frac{1}{2}$$
4. Add the results: $$\frac{1}{2} + \frac{4}{5} = \frac{1 \cdot 5 + 4 \cdot 2}{10} = \frac{5 + 8}{10} = \frac{13}{10} = 1,3$$
5. Subtract the result from 4.1: $$4,1 - 1,3 = 2,8$$
Therefore,
$$4,1 - (1\frac{5}{6} \cdot \frac{3}{11} + \frac{8}{25} : 0,4) = 4,1 - (\frac{11}{6} \cdot \frac{3}{11} + \frac{8}{25} : \frac{2}{5}) = 4,1 - (\frac{1}{2} + \frac{4}{5}) = 4,1 - \frac{13}{10} = 4,1 - 1,3 = 2,8$$
Answer: 2.8