1) А (2; -5) и В (-3; 10):
- Уравнение прямой, проходящей через две точки: $$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$
- $$\frac{y - (-5)}{x - 2} = \frac{10 - (-5)}{-3 - 2}$$
- $$\frac{y + 5}{x - 2} = \frac{15}{-5}$$
- $$\frac{y + 5}{x - 2} = -3$$
- $$y + 5 = -3(x - 2)$$
- $$y + 5 = -3x + 6$$
- $$y = -3x + 1$$
2) С (6; -1) и D (24; 2):
- $$\frac{y - (-1)}{x - 6} = \frac{2 - (-1)}{24 - 6}$$
- $$\frac{y + 1}{x - 6} = \frac{3}{18}$$
- $$\frac{y + 1}{x - 6} = \frac{1}{6}$$
- $$6(y + 1) = x - 6$$
- $$6y + 6 = x - 6$$
- $$6y = x - 12$$
- $$y = \frac{1}{6}x - 2$$
Ответ: 1) y = -3x + 1; 2) y = 1/6x - 2.