Ответ:
$$8\sqrt[3]{\frac{3}{4}} = 8 \cdot \frac{\sqrt[3]{3}}{\sqrt[3]{4}} = 8 \cdot \frac{\sqrt[3]{3} \cdot \sqrt[3]{2}}{\sqrt[3]{4} \cdot \sqrt[3]{2}} = 8 \cdot \frac{\sqrt[3]{6}}{\sqrt[3]{8}} = 8 \cdot \frac{\sqrt[3]{6}}{2} = 4\sqrt[3]{6}$$
$$\frac{1}{3}\sqrt{405} = \frac{1}{3}\sqrt{81 \cdot 5} = \frac{1}{3} \cdot 9\sqrt{5} = 3\sqrt{5}$$
Сравним:
$$(4\sqrt[3]{6})^6 = 4^6 \cdot 6^2 = 4096 \cdot 36 = 147456$$
$$(3\sqrt{5})^6 = 3^6 \cdot 5^3 = 729 \cdot 125 = 91125$$
$$147456 > 91125 \implies 4\sqrt[3]{6} > 3\sqrt{5}$$
$$8\sqrt[3]{\frac{3}{4}} > \frac{1}{3}\sqrt{405}$$
Ответ: $$8\sqrt[3]{\frac{3}{4}} > \frac{1}{3}\sqrt{405}$$