6. Упростите выражение:
- \(\frac{8}{12}a + \frac{7}{15}a = \frac{2}{3}a + \frac{7}{15}a = \frac{10}{15}a + \frac{7}{15}a = \frac{17}{15}a = 1\frac{2}{15}a\)
- \(\frac{6}{13}y - \frac{1}{3}y = \frac{18}{39}y - \frac{13}{39}y = \frac{5}{39}y\)
- \(\frac{3}{27}t + \frac{4}{18}t = \frac{1}{9}t + \frac{2}{9}t = \frac{3}{9}t = \frac{1}{3}t\)
- \(3\frac{6}{14}b + 1\frac{3}{21}b = 3\frac{3}{7}b + 1\frac{1}{7}b = 4\frac{4}{7}b\)
- \(f - \frac{3}{7}f = \frac{7}{7}f - \frac{3}{7}f = \frac{4}{7}f\)
- \(3x - 1\frac{8}{10}x = 3x - 1\frac{4}{5}x = 3x - \frac{9}{5}x = \frac{15}{5}x - \frac{9}{5}x = \frac{6}{5}x = 1\frac{1}{5}x\)
- \(\frac{4}{18}n + (\frac{3}{4}n - \frac{8}{12}n) = \frac{2}{9}n + (\frac{3}{4}n - \frac{2}{3}n) = \frac{2}{9}n + (\frac{9}{12}n - \frac{8}{12}n) = \frac{2}{9}n + \frac{1}{12}n = \frac{8}{36}n + \frac{3}{36}n = \frac{11}{36}n\)
- \(\frac{3}{5}c - \frac{2}{35}c + \frac{3}{14}c = \frac{42}{70}c - \frac{4}{70}c + \frac{15}{70}c = \frac{38}{70}c + \frac{15}{70}c = \frac{53}{70}c\)
Ответ: 1) \(1\frac{2}{15}a\), 2) \(\frac{5}{39}y\), 3) \(\frac{1}{3}t\), 4) \(4\frac{4}{7}b\), 5) \(\frac{4}{7}f\), 6) \(1\frac{1}{5}x\), 7) \(\frac{11}{36}n\), 8) \(\frac{53}{70}c\)