283. Упростите выражение.
1) cos3αcosa - sinasin3α
Используем формулу косинуса суммы: cos(α + β) = cosαcosβ - sinαsinβ
cos3αcosa - sinasin3α = cos(3α + α) = cos(4α)
2) cos5βcos2β + sin5βsin2β
Используем формулу косинуса разности: cos(α - β) = cosαcosβ + sinαsinβ
cos5βcos2β + sin5βsin2β = cos(5β - 2β) = cos(3β)
3) cos($$\frac{\pi}{7}$$ + α)cos($$\frac{5\pi}{14}$$ - α) - sin($$\frac{\pi}{7}$$ + α)sin($$\frac{5\pi}{14}$$ - α)
Используем формулу косинуса суммы: cos(α + β) = cosαcosβ - sinαsinβ
cos($$\frac{\pi}{7}$$ + α)cos($$\frac{5\pi}{14}$$ - α) - sin($$\frac{\pi}{7}$$ + α)sin($$\frac{5\pi}{14}$$ - α) = cos(($$\frac{\pi}{7}$$ + α) + ($$\frac{5\pi}{14}$$ - α)) = cos($$\frac{2\pi + 5\pi}{14}$$) = cos($$\frac{7\pi}{14}$$) = cos($$\frac{\pi}{2}$$) = 0
4) cos($$\frac{7\pi}{5}$$ + α)cos($$\frac{2\pi}{5}$$ + α) + sin($$\frac{7\pi}{5}$$ + α)sin($$\frac{2\pi}{5}$$ + α)
Используем формулу косинуса разности: cos(α - β) = cosαcosβ + sinαsinβ
cos($$\frac{7\pi}{5}$$ + α)cos($$\frac{2\pi}{5}$$ + α) + sin($$\frac{7\pi}{5}$$ + α)sin($$\frac{2\pi}{5}$$ + α) = cos(($$\frac{7\pi}{5}$$ + α) - ($$\frac{2\pi}{5}$$ + α)) = cos($$\frac{5\pi}{5}$$) = cos(π) = -1
Ответ: 1) cos(4α), 2) cos(3β), 3) 0, 4) -1